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Abstract 

In continuum theory of defects the notion of a flat connection is employed. This paper gives a char- 
acterisation of these connections via injective R3-valued differential forms. For material structures 
with continuous distributions of dislocations, a configuration space in the sense of global analysis is 
introduced and analysed. A kinematics for these dislocations is formulated which generalises from 
elasticity. 
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1. Introduction 

In continuum theory of defects the differential geometric description of crystals of Bravais 
type was first formulated by Kondo [9], Nye [ 131 and Bilby et al. [5]. Based on this theory, 
Kroner [lo] as well as No11 [ 121 and Wang [ 171 developed different theories for character- 
ising the interior structure of a material. 

These theories have in common that the material structure of the body manifold M is 
characterised by flat connections on the tangent space TM of M. The torsion of a flat 
connection describes a continuous distribution of a certain type of defect of the material 
structure, called dislocation density or material inhomogeneity. Any flat connection implies 
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the existence of three linear independent vector fields which may be interpreted as a basis 
of lattice vectors of a (continuised) crystal. Thus, the space of all flat connections becomes 
the starting point for non-linear continuum theory of dislocations, cf. [lo]. 

On the other hand, configurations of a purely elastic material are given by the space of all 
embeddings, in classical terms called placements, of the body manifold M into [w”, cf. [ 111. 

Due to the translational symmetry, not the embedding itself but only the differential of 
the embedding, i.e. the deformation gradient, is crucial for the constitutive behaviour of the 
material. Mathematically, these gradients may be considered as exact @-valued differential 
one-forms. 

The main purpose of this paper is to show that the idea due to Taylor [ 161, that the 
discrepancy between the macroscopic deformation and the deformation of a crystallographic 
lattice is responsible for the evolution of defects, is encoded in the Helmholtz decomposition 
of differential forms. We assume the body manifold M to be a smooth three-dimensional 
compact oriented Riemannian manifold with boundary which is connected and embeddable 
into the physical space [w3. After reviewing some facts about 1W3-valued differential forms 
in Section 2, flat connections on TM are characterised via the set of all fibrewise injective 
iW3-valued differential one-forms Z(M; rW3) in Section 3. In Section 4 some basic ideas of 
continuum theory of dislocations, as can be found in [IO]. are reformulated in terms of 
(W3-valued differential forms. 

Section 5 links the theory of dislocations to elasticity. This is done by employing the 
Helmholtz decomposition theorem which claims that any differential form may uniquely 
be decomposed into an exact part, i.e. a gradient, and into a divergence-free part. A con- 
figuration space V(M; rW3) which generalises from elasticity is constructed whose ele- 
ments, called generulised configurations, are no pure deformation gradients anymore. Their 
divergence-free parts describe dislocation densities of a material. The Helmholtz decom- 
position allows to split any generalised configuration into an elastic (exact) part and into 
a plastic (divergence-free) part describing the kinematics of the dislocations (Section 6). 
Since V(M: Iw”) is a Frechet manifold which contains the space of all deformation gradi- 
ents as a submanifold, it appears to be an appropriate candidate for a configuration space 
for materials with dislocations in the sense of global analysis. The advantage of this ap- 
proach seems to be that analytically. differential forms are much easier to handle than 
connections. 

In Section 7, the approach presented in this paper is related to the works of other authors. 
e.g. [7,12,17]. The Ricci lemma is used in Section 8 to characterise dislocation densities as 
a quotient of a subspace of Z(M; rW3). 

2. Hodge theory 

Let M be a smooth connected three-dimensional compact oriented Riemannian manifold 
with boundary which is embeddable into the physical space [w3. An [W3-valued differential 
form o E @(M; R3) of degree k is a smooth assignment of a skew-symmetric k-linear 
map wI, on T,M to each point p E M, where 
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wp : TPM x . . . x TpM + R3 Vp E M. 

k times 

Differential forms may be considered as skew-symmetric two-point tensors of type (1, k) 
on M which are well-known objects in continuum mechanics, cf. [ 111. Let M represent the 
body manifold of the mechanical system in view. Then the deformation gradient and the first 
Piola-Kirchoff stress tensor are IW3-valued one-forms on M, i.e. some w E L?‘(M; R3). 
Analogously, placements of M and force fields are elements in Q”(M; R”) which, by 
definition, is equal to CCO(M; R3). 

Each Qk(M; R3) may be equipped with a fibre metric by using the Riemannian metric g 
on M and the standard scalar product (., .) R~ on R3. For our purposes, it suffices to consider 
the cases k = 0, 1. Let El, E2, E3 E r(TM) be a triple of vector fields orthonormal with 
respect to the metric g. A fibre metric on Q’(M; R3) is then defined by 

3 
(w, rl) := x(o(E,), ~(EI))~s, w, rl E fi’(M; R3). (1) 

The product (1) does only depend on the metric R but not on the chosen frame on M, 
cf. [ 11. Notice that (1) corresponds to the contraction of skew-symmetric two-point tensors. 
If el, ez, e3 E IF@ denotes the standard basis in [w3 and O’, tY2, O3 E L?‘(M) the dual frame 
corresponding to El, E2, E3, then, in coordinates, any one-forms w and rl may be written 
as u = CL,, u:B’er, and q = CL,, ~~0’e~. Thus (1) reads 

With the help of the Riemannian volume element F induced by g, the space R ’ (M; R3) is 
now endowed with an L2-product G, given by 

o, q E D’(M; R3). (2) 

Fork = 0 the corresponding L2-product G is just the usual one. Let V denote the Levi-Civita 
connection on M associated to g. Then V induces a covariant derivative on Q’(M; R3), 
given by 

(Vyw)(X) = D[w(X)](Y) - w(VyX), X, Y E f (TM). 

Here, the first term of the right-hand side means the directional derivative of the [W3-valued 
function w(X) in direction of the vector field Y. The covariant derivative allows to write 
the exterior derivative d : Q’(M; R3) --+ Q2(M; R’) as 

dw(X, Y) = (Vxw)(Y) - (Vyw)(X), X, Y E I-(TM). 

For k = 0 the exterior derivative corresponds to the gradient. The co-differential 6 : 
L?](M; R”) - COO(M; R3) may be defined by 
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3 

SW := - c WE,~)(El). 
/=I 

Notice that the co-differential 6, unlike the exterior derivative, depends on the chosen 
Riemannian metric g. In classical tensor notation, 6 corresponds to the divergence of a 
tensor field. 

Let N denote the outward pointing unit normal field on the boundary aM of M. A 
differential one-form w is called parallel to aM iff its normal component vanishes, i.e. 
w(N) = 0. Define the space of all divergence-free and parallel one-forms by 

D(M: [w3) := (w E n’(M; rW3) ( 6w = 0 and w(N) = 01. 

We are now able to state the Helmholtz decomposition for the special case of [W3-valued 
one-forms. For a general version and a proof see [ 141. 

Theorem 2.1 (Helmholtz decomposition). Let M be a compact oriented Riemannian mani- 
fold with boundary. Then for any w E J2’(M; rW3) there exist u E P(M; [w3) and /I E 
D(M; iw”) such that w = du + B, Moreover, du and j3 are mutually L2-orthogonal with 
respect to the inner product (2), i.e. is the decomposition 

R’(M; 1w’) = dCCO(M; Iw”) @ D(M; [w3) 

is direct and L2-orthogonal. 

3. Flat connections and differential forms 

In order to ensure the existence of flat connections, we assume the tangent bundle TM 
of M to be trivialisable, i.e. the existence of a bundle isomorphism 

y:TMfMx[W3, 

which on M induces the identity idM : M --+ M. This strong bundle isomorphism y is 
considered here as an [W3-valued one-form in U’(M; rW3) which is fibrewise injective. The 
set of all fibrewise injective [W3-valued one-forms is denoted by Z(M; rW3). Each one-form 
y E Z(M; Iw”) is a trivialisation of TM and vice versa TM is trivialisable iff Z( M; iw3) # 671. 
Obviously, Z(M; rW3) is an open subset of S2’(M; rW3) when endowed with Whitney’s P- 
topology, cf. [2]. We identify sections T(M x rW3) with [W3-valued functions CW(M: [w3) 
and interpret the standard scalar product (., .)R3 on Iw” as a metric on the trivial vector 
bundle M x [w”. Then, each y E Z( M; rW3) defines a Riemannian metric on TM by pulling 
back the scalar product (., .)n3: 

m[y](X, Y) := (yX, yY),3, X. Y E T(TM). (3) 

Let M(M) denote the Frechet manifold of all Riemannian metrics on TM. The following 
lemma shows that each metric in M(M) may be induced by some ya E Z( M; rW3). 
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Lemma 3.1. For each Riemannian metric mg E M(M), there exists yo E Z(M; 5X3) with 

mlvl = mo. 

Prooj Let y E Z(M; rW3> be arbitrary. Then m[y] E M(M) and by the theorem of Fischer- 
Riesz, for each metric mu E M(M) there is a strong bundle isomorphism A0 E Aut(TM) 
such that 

mo(X, Y) = m[y](AoX, AoY) VX, Y E T(TM). 

Therefore, mc = m[vn]. where yo := yAo E Z(M; rW3). 0 

Each y E Z(M; d) induces a linear connection on TM by pulling back the trivial 
connection d on M x [w3, given by 

V[ylxY := y-’ d&Y)(X) VX, Y E T(TM). (4) 

The set of all connections which are induced by some y E Z(M; rW3) is denoted by 

K: := {V[y] I y E Z(M; rW3)}. (5) 

With the preceding identifications, d may also be considered as the exterior derivative of 
iW3-valued differential forms. In particular, 

V[y]xY = +&(yY) VX, Y E f(TM), (6) 

where Lx (y Y) denotes the Lie derivative of the lR3-valued function y Y in the direction of 
the vector field X. 

Connections in K are flat, metric and, in general, will have non-vanishing torsion. This 
can be seen as follows: On one hand 

~z(m[yl(X, Y)) = KZ(YXh YY))p + (YX, LZ(YY))@ 
= ~lYKV[YlZX, Y) + m[vl(X, VYIZY) (7) 

for all X, Y, Z E f (TM) and therefore (V[y]m[v]) = 0, i.e. V[y] is metric with respect to 
m[v]. Using d2 = 0, a short calculation shows that the curvature R[y] of V[y] is vanishing: 

Wl(X, Y)Z := WlxWlrZ - V[yl~V[ylxz - vryl~x.~~~ 

= Y-‘wx~Yw) - .CrLx(yZ) - JqX.Y](YZ)l 

= Y-‘[d*y(X, Y, Z)] = 0 

for all X, Y, 2 E r(TM). Finally, observe that 

dy(X, Y) = Lx&Y) - LY(YX) - v[X, Yl = vT[vl(X, Y) (8) 

for all X, Y E T(TM), where the torsion Try] E Q*(M; TM) of V[y] is given by 

T[y](X, Y) := V[ylxY - V[y]yX - [X, Y] VX, Y E r(TM). (9) 
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Since y E Z(M; R3) is fibrewise injective 
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dy = 0 M T[y] = 0, (10) 

which means that the torsion of V[y] vanishes if and only if y is closed, dy = 0. Thus 
all torion-free connections, i.e. all Levi-Civita connections, in K are induced by closed 
one-forms in Z(M; R3). In particular, K contains all flat Levi-Civita connections on TM. 
Summarising, we obtain the following. 

Proposition 3.1. Each V[y] E K, y E Z(M; R3) is metric with respect to m[y] and has 
vanishing curvature. Moreoven V[ y] is a Levi-Civita connection [f and only [f y is closed. 

According to [ lo], the space of all flat metric connections K is the starting point for the 
non-linear theory of dislocations. 

A vector field X E f (T M) is called parallel with respect to a connection V iff VzX = 0 
for all 2 E T(TM). 

Lemma 3.2. Let y E Z(M; R3). Then X E T(TM) is parallel with respect to V[y] # 
y(X) is a constantfunction in Cc0 (M; R3). 

Proof Identifying sections T(M x R3) with R3-valued functions C?(M; R’). (6) implies 

V[ylzX = 0 VZ E T(TM) 

* y(X)(p) = Y(P)X(P) = u E R3 VP E M. 

This completes the proof. ??

Proposition 3.2. A triple of vector$elds X 1, X2, X3 E f (T M) is a globally dejinedframe 
ifthere exists y E Z(M; R3) such that X1, X2, X3 is m[ y]-orthonormal and parallel with 
respect to V[y]. y is uniquely determined up to a choice of a basis in R3. 

Proof: Let X I. X2, X3 E r (T M) be a globally defined frame. The parallelism P associated 
with this frame is then defined by setting 

P(p.q) : T,M --+ T,M, Xt(q) := P(p, q>X,(p). p,q EM, 1 = 1.2,3. 

Fixing q = qo, this gives 

P(p. qo)Xt(p) = const. Vp E M, 1 = 1,2, 3. (11) 

Identifying T4,,M with R3 via a fixed isomorphism CO : T,,M -% R3, one obtains an 
injective R3-valued one-form y := cocP(., qo) E Z(M; R3). By (11) y(X,), 1 = 1,2, 3, 
are constant functions which by Lemma 3.2 implies that Xi, X2, X3 is parallel with respect 
to V[y]. Clearly, CO may be chosen such that the frame is m[y]-orthonormal. 

Now let y E Z(M; R3) be given. Choose an orthonormal basis ~1, ~2, u3 in R3 and set 
Xk := y-‘uk, k = 1.2,3. Then Xi, X2, X3 E T(TM) is m[y]-orthonormal by (3) and 
parallel with respect to V[y] by Lemma 3.2. Cl 
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When M is simply connected each flat connection V has a unique parallelism P, cf. [8]. 
Since any parallelism P may be written as P(p, q) = v{*(q)ayo(p), p, q E M, for some 
yu E Z(M; R3), for each flat connection V on TM, there exists a yu E Z(M; R3) with 

V = Wol. 

4. The geometry of dislocations 

In this approach a crystal of Bravais type is considered to be a continuum in the shape of 
a smooth manifold M on which a crystallographic lattice is impressed whose points are also 
called atoms. The lattice spacings are assumed to be zero as compared to all other lengths 
of interest. Thus, the lattice vectors of the crystal constitute a frame X1, X2, X3 E f (TM) 
of the manifold M as proposed by Kroner [lo]. 

By Proposition 3.2, the existence of a globally defined frame X1, X2, X3 E T(TM) 
on M is equivalent to the existence of an injective one-form y E Z(M; R”) such that 
the frame becomes m[y]-orthonormal and parallel with respect to V[y]. Hence, from the 
mathematical point of view, there is no difference between a continuised crystal in the sense 
of Kroner and a material whose interior structure is characterised by some y E Z(M; R3). 
In order to obtain a geometric intuition for dislocations, we go along the crystallographic 
lines. 

Since M is compact, each vector field Xk has a flow i/Q, k = 1, 2, 3. Assuming XI, X2, 
X3 E T(TM) to be the frame of lattice vectors of a crystal, the flows $k, k = 1, 2, 3, 
describe a crystallographic lattice on M whose spacing is infinitesimally small. In other 
words, these flows constitute a crystallographic coordinate system in the original sense of 
continuum theory of crystals, cf. [6,10]. 

The crystallographic coordinate system will be a coordinate system on M in the sense of 
differential geometry if and only if all flows commute, i.e. 

+l(tt +k(k(s, P)) = +k(S, ‘/&(t, p)), p E M, 1, s E [w, 1, k = 1, 2, 3. 

In general, this will not be the case. It is well known that the flows tit, 1)2, $3 are acoordinate 
system on M if and only if the Lie bracket of its corresponding vector fields vanishes: 

[Xl, Xk] = 0, 1, k = 1, 2, 3, 

cf. [ 151. If the Lie bracket does not vanish, the resulting ‘non-closing’ of the flows of 
X1, X2, X3 becomes a continuous analogue of the so-called Burgers circuif in classical 
crystallography, see Fig. 1. Continuous distributions of dislocations are thus completely 
characterised by the Lie bracket. 

Let T[y] be the torsion of the connection V[y] associated with the frame X1, X2, X3 E 
r(TM). Since V[y] is flat, (9) yields 

T]I/I(X/, Xk) = -[Xl, Xk], 1, k = 1,2,3. (12) 
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Fig. 1. Non-closing integral curves 

Therefore, the torsion T[y] is a measure for the non-closing of the integral curves of 
XI, X2, X3. In other words, a crystallographic coordinate system is a coordinate system in 
the sense of differential geometry iff the torsion T[y] vanishes. Using (8) we obtain 

dy(X. Y) = yT[y](X, Y). X. Y E f (TM). (13) 

Since y is fibrewise injective, the exact two-form dy E Q2(M; R3) describes the dislocation 
density (or the material inhomogeneity) T[y] as well. 2 For this reason, in this set-up each 
dy , y E Z(M; R3), is called dislocation density. The Burgers vector b E R” then has a 
particular simple form. It computes as the integral 

(14) 

where S c A4 is some arbitrary surface, 3 i.e. b is the flux of the dislocation density dy 
through the surface S. By (13), a material characterised by y has no dislocations if and only 
if y is closed, dy = 0. The discussion shows that the state of the crystallographic lattice 
on M is completely determined by specifying y . Summarising, we have the following. 

’ See Theorem 8.1 for another characterisation. 
3 The Burgers vector is usually defined by the integral of the torsion T over a surface S. Such an integral 

depends heavily on the chosen trivialisation of TM, cf. [ 181. By (13), the Burgers vector ( 14) is measured 
in the trivialisation given by y. i.e. it is just the usual one. 
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Theorem 4.1. Any con&uration of the interior structure of M is completely determined by 
some y E Z(M; R3). The corresponding Burgers vector b of an arbitrary surface S C M 
is given by the integral 

b = dy, 
s 
s 

where d y describes the dislocation density on M. 

By Theorem A. 1, Appendix A, for each dt E f12(M; R3) there exists an injective one- 
form y E Z(M; R3) with de = dy. Hence, each exact R3-valued two-form dc describes 
a dislocation density on M. 

Notice that there are three equivalent characterisations of a dislocated material: It can 
be characterised by frames XI, X2, X3 E r(TM), by flat connections V[y] E K, and 
by injective one-forms y E Z(M; R3). The defect structure is then specified by either the 
application of the Lie bracket [., .] on TM, the torsion T [v] or the two-form dy For a purely 
intrinsic description, the spaces Ic and Z(M; R3) serve equally well as configuration spaces, 
see Section 7. However, being interested how the defect structure affects the embedding 
(placement) of M into the physical space R3, it is very natural to take Z(M; R3), see 
Section 5. 

The invariance of this set-up under diffeomorphisms can easily be seen as follows. Let 
j : M --+ R3 be an embedding of M into the physical space R3. Then the push-forward 
j, y is an injective one-form j, y E Z(j (M); R3) which determines a defect structure on 
the embedded body j(M). Since the exterior differential d commutes with push-forwards, 
the respective dislocation densities satisfy j, dy = d( j,?). This implies 

b=/ dy= 1 d(j,y) (15) 

s j(S) 

for the Burgers vector, that is the Burgers vector is invariant under diffeomorphisms. 4 

5. The configuration space V(M; R3) 

Let E(M; W3) denote the space of all smooth embeddings of the body manifold M into 
the physical space R3. A placement of M in the sense of elasticity is then given by a smooth 
embedding j E E(M; R3). Since the tangent bundle of R3 is trivial TR3 z R3 x R3, the 
tangent map Tj : TM --+ TR3 splits Tj = (j, dj). As a consequence, dj is an exact 
R3-valued differential form in Z(M; W3). 

Consider a material M whose interior structure is given by some frame Xl, X2, X3 E 
f (TM) describing a non-dislocated reference lattice on M. Since the push-forward j, 
of any embedding j commutes with the Lie bracket, one has j*[Xk, XI] = [j,X,, j,Xl], 

4 It is not hard to prove that the non-exact component of j, y is given by j,/l E VjDi*n (j (M); R3). Thus, the 
defect structure on j(M) is determined by j,b, whereas j,g is the metric pushed forward by j, cf. [ 181. 
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k, 1 = 1, 2, 3 and j induces a frame j,Xt , j*X2, j*X3 on j (M) describing a non-dislocated 
lattice on j(M). Notice that this observation (as well as (15)) allows us to view any change 
in j as a deformation which is compatible with the reference lattice. 

By Proposition 3.2, there exists a Levi-Civita connection V[d jo] which is assumed here to 
be induced by some reference embedding 5 jo E E (M; R3) such that X 1, X2, X3 is m [d ja]- 
orthonormal and parallel with respect to V[djn]. Using Lemma 3.2, one may assume that 

ju,Xc = djuX[ = el, 1 = 1,2,3, (16) 

where et, ez. eg denotes the standard basis of R3. Here, we identified vector fields with their 
principal parts. 

In view of the Helmholtz decomposition, let an arbitrary but fixed divergence-free com- 
ponent /IO E D(M; R3) be the quantity by which the frame X1, X2, X3 is deformed. Iden- 
tifying djo + @u with (ju, djo + flu) E Q * (M: [w” x R3), one obtains three vector fields 
(djo + /30)X1, (djn + po)X7_, (djo + ,90)X3, which constitute a frame on jn(M) if and 
only if d jo + Bu is injective. In Appendix A we will give a criterion for d jn + ,9n lying in 
Z(M; R3). For Be # 0 this frame represents a dislocated lattice on ju(M). In this sense. 
the original frame X1, X2, X3 is deformed incompatibly with the original non-dislocated 
reference lattice. 

This, of course, is nothing else but the idea that the evolution of defects is responsible for 
the discrepancy between the macroscopic displacement and the deformation of the lattice 
of the material, cf. Taylor [ 161. The commutative diagram 

TM ckJ.*Bo) 
jo(W x R3 

i 
TM 

1 
Prl 

M A 
jo(M) 

attempts to reflect this fact to some extent. Using d2 = 0, for each y = d j +/I E Z(M; R3) 
with j E E(M; R3), fi E D(M; R3), we have dy = d/?. Dislocations, i.e. the material 
structure on M, are thus encoded in the non-exact part /I of a configuration y. The sum 
y = dj + p is a decomposition which is orthogonal with respect to the L2-product 4 
induced by g, i.e. it is the Helmholtz decomposition with respect to g. This gives rise to the 
following definition. 

Definition 5.1. The configuration space of a material M whose interior structure is spec- 
ified by some /I E V(M; R3) is dejined by 

V(M; R3) := (y E Z(M; R3) ) y = dj + B, j E E(M: R3), /3 E D(M: R3)). 

(17) 

’ By Proposition 3.1, Levi-Civita connections are induced by closed forms y E Z(M; R3). If M is con- 
tractible, by the Poincark lemma closed forms are exact y = di, where the injectivity means that i must be 
an immersion. Since E(M; R3) is dense in the space of all immersions, this assumption is not too restrictive. 
In general, closed forms in Z(M; [w3) differ from immersions essentially by a finite-dimensional subspace, 
cf. [18]. 
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Clearly, I/(M; [w3) contains the space of all differentials of embeddings 

dE(M; 178~) := (dj E Q’(M; R3) ( j E E(M; R3)) (18) 

as a subset. Since it can be shown that the crucial kinematic quantity in elasticity is the 
deformation gradient, i.e. the differential dj of an embedding j, the classical configuration 
space of elasticity E(A4; R3) is replaced here by dE(M; R3), cf. [3,11]. By Proposition 
A.2 below, dE(M; d) is a Frechet submanifold of V(M; R3). Thus, 1/(M; R3) becomes 
a natural generalisation of the configuration space dE(M; R3) of defect-free continuum 
mechanics. Configurations in V(M; R3) will be referred to as generulised conjgurutions. 

Due to Theorem A. 1 and the remark made at the end of Section 4, generalised configurations 
are capable of describing any possible dislocation density. 

A priori, one is free in choosing a reference metric g. The only metrics relevant are those 
with Helmholtz decompositions y = dj + B such that the exact part dj stems from an 
embedding j E E(M; R3). This is reflected in our definition of I/‘(M; R3). In general, this 
need not be the case. A canonical choice is the pull-back metric g = m[dju] induced by 
some reference embedding ju E E(M; lR3) according to (3). The corresponding Frechet 
space D(M, R3) is then interpreted as follows: Let p[v] = ,umlvl be the Riemannian volume 
form on A4 induced by m[v] and define the volume function by 

n 

Vol : V(M; R3> - R, Y - WY1 := I cL[YI. 

M 

We differentiate Vol at dja E dE(M; R3) c V(M; R3) in direction of an arbitrary B E 
R’ (M; @) and obtain 

~Wdjol(B) = s &4djolW = 
s 

tr Wjolddjol, 
M M 

where B[dju] E End(TM) is given by p = djuoB[dju]. From the definition of the L*- 
product 9 on D’ (M; rW3) corresponding to m[d ja] it follows that 

n 

I tr Bidjo] p[djo] = G(djoI/3> = 0 V/l E V(M; rW3). 

M 

Therefore, D,(M; R3) C TdjoV(kf; W3) is a subspace tangent to the level set of Vol through 
djn E V(M; rW3). 

It is shown in [ 191 that the Helmholtz decomposition depends smoothly on the metric g. 
For any metric g’ close enough to g, the Helmholtz decomposition of y with respect to g’ 
yields 

y = dj’+ B’ with dj’ E dE(M; R3), /I’ E D’(A4; R3). 

Then dy = db = dp’ such that the defect structure on M remains invariant. However, in 
general, d j # d j’ and /I # /?‘. In particular, the embedding j of the material will change. 
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6. The kinematics of dislocations 

A deformation of the material is now given by a smooth curve 

y : R - V(M; R3) (19) 

in the configuration space V( M: R3). For each 1, we decompose y (t) according to Helmholtz 
with respect to a fixed reference metric g and obtain 

v(r) = dj(t) +,5(t), r E R. 

Then the smooth curve of differentials of embeddings 

dj : R - dE(M; lR3) (20) 

represents the motion of the exact, i.e. elastic or integrable parts of the deformation. The 
smooth curve 

p : R + D(M; R3) (21) 

represents the motion of the non-integrable orplastic parts of the deformation. By assump- 
tion, only the integrable parts of v(t) will manifest themselves in the physical space R’ 
as deformations. If B(t) = 0 Vt E R, then the deformation is purely elastic and we are 
within the realm of elasticity. However, in the presence of a constant dislocation density, 
i.e. B(t) = Da # 0 Vt E R, the evolution of the exact components dj (t) of v(t) encounter 
a geometric obstruction given by DO, see Corollary A. 1, Appendix A. 

One may visualise the deformation (19) of the dislocated material M as a motion in 
the physical space R3 in the sense of Euler’s description in fluid dynamics. For simplicity 
assume that at f = 0 the deformation v(t) satisfies 

y(O) = dju with ju E E(M; R3). (22) 

Then, according to (16), the frame X 1, . . . , X3 defined by y (0) represents the undeformed 
lattice structure on M. This frame induces a crystallographic coordinate system on jo(M) 
which by construction coincides with the geometric coordinate system of straight lines 
inherited from R3. 

The crystallographic coordinate system will be dragged along by the curve of embeddings 
(20) which describes how M will be embedded into R3 at any instant of time. The crystal- 
lographic lattice is incompatibly deformed by the curve (21) of non-integrable parts, such 
that y(t)Xt , y(t)X2, ~(t)Xs describes adislocated lattice on j(t)(M), unless /I(t) = 0 for 
all t. The crystallographic coordinate system on j(t)(M) is curvilinear and will, in general, 
deviate from the initial coordinate system dragged along by the embeddings (20) alone. 

We now introduce the concept of an internal and an external observer in the sense of 
Kroner [ 101. The internal observer lives on M and uses either K: or Z(M; R3> for a con- 
figuration space. He is thus able to measure the dislocation density on M. The external 
observer lives in the physical space R3 and uses V(M; R3) as a configuration space. He 
can do anything the internal observer can. However, in contrast to the internal observer, the 



346 J. Wenzelburger/Journal of Geometry and Physics 24 (1998) 334-352 

external observer knows how the material is embedded in the physical space R3 by using 
the Helmholtz decomposition. 

Since in elasticity one likes to compare configurations of a material by means of a defor- 
mation tensor, we finish the section by discussing the deformation tensor of Green-Lagrange 
E. In this approach, the Green-Lagrange deformation tensor between two configurations 
y, p E V(M; R3) is given by 

E(X, Y) := +z[~](X, Y) - m[F](X, Y)) vx, Y E f (TM). (23) 

Clearly, E is a symmetric two-tensor. Notice that in the presence of dislocations, one cannot 
associate a pure displacement field u E P(M; R3) with the deformation tensor E. The 
Helmholtz decompositions y = dj + B and 7 = dj + ,8, respectively, yield 

x=Y--y=du-x, wheredu=dJ-dj, x=&B 

and du E dR’(M; R3), x E D(M; R3). Then u E P(M; R3) is the displucement~eld 
associated with E, which is uniquely determined up to translations, and the non-integrable 
x is the ‘displacement’ of the dislocations. We define the elastic component Ece) of E by 

ECe)(X, Y) := f(m[dJ](X, Y) - m[dj](X, Y)) VX, Y E r(TM) 

and the plastic component E(p) by E(P) := E - E (e). ECe) and E(p) both are symmetric 
tensors of second order. If E(P) 3 0, then E = ECe) is the just deformation tensor of classical 
elasticity induced by a displacement field u = 7 - j. 

7. The geometric structure of Z(M; R3) 

To indicate how the formulation presented in the preceding sections relates to the works 
of other authors, see e.g. [7,12,17], we identify Z(M; R3) with the global sections of the 
frame bundle of TM. From there on, how rrx : Z(M; R3) + K becomes a trivial principal 

G/(3)-bundle is outlined. If Is(lR3, TpM) denotes the set of all linear isomorphisms lR3 -% 
T,M, the frame bundle of TM is defined by 

P := u Is(R3, T,M). 

P-+f 

P is a principal GI(3)-bundle. Consider the ‘inverted frame bundle’ 6’ given by 

6 := u Is(T,M, R3), 

PE‘+J 

A 
where Is(TpM, R3) is defined analogously. On P there is the natural free right action 

l? : @ x G1(3) + 6, (i, g) ++ g-’ ’ i . (24) 

Then, fibrewise inversion i& : P --+ 6, pointwise given by 

‘Pp : zp E Is(R3, T,M) +-+ 2, := z;’ E Is(TpM, R3) Vp E M, 
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is an equivariant, strong bundle isomorphism between P and b. Therefore, we endow @ with 
the structure of a principal GZ(3)-bundle via 9 such that rL becomes a strong isomorphism of 
principal bundles. Notice thatZ(M; R3) = r(p). Since TM trivialisable, the set Z(M; 5%“) 
is not empty, cf. Section 3. On the other hand, the existence of a global section is equivalent 
to the triviality of a principal bundle, cf. [S]. Therefore, both bundles P and @ are trivial, 
i.e. P Z M x G1(3) and 6’ 2 A4 x G1(3). Using P, this yields the following. 

Proposition 7.1. Let TM be trivialisable. Then the$brewise injective one-formsZ( M; R’) 
are isomorphic with the global sections f (5’) sf the.frame bundle ef T M: 

Z(M; R3) Z f (F’) Z COO(M; Gl(3)) 

Next, we establish the relationship between the more classical space K and the space of 
all injective one-forms Z(M; R3). 

Proposition 7.2. Let y, /3 E Z(M; R3). Then V[y] = V[fi] $%/I = ay, where u E Gl(3). 
Consequently, the natural surjection 

zK : Z(M: R3) --+ K, Y - WI 

satisJes n,‘(V) 2 Gl(3) for each V E K. 

Proofi For given y, B E Z(M; R3), there exists a E CCO(M; G1(3)) such that p = cly. 
Thus 

bv[fllxy = cx(aYy) = (Cxa)(yY) + BV[y]xY, X, Y E T(TM). 

Since b is fibrewise injective, this implies 

V[y] = V[B] M B = ay with u E G1(3), 

where constant functions in Cm (M; GI (3)) are identified with G1(3). 0 

Consider the free right action of Gl(3) on Z(M; R3) 

@ : Z(M; R3) x G1(3) --+ Z(M; R3), o/98) - g 
-1 

. Y (25) 

and denote the set of all right cosets of (25) by 

Z(M; ~3),~t(3j := Uyl I Y E Z(M; R3)l, (26) 

where /I E [v] w 3g E G1(3) with B = g-’ y. Now the following becomes obvious. 

Theorem 7.1. The space of allJut metric connections K is isomorphic with the quotient 
Z(M; [w3),~t(3) via the induced isomorphism 
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The projection rr~ : Z(M; R3) -+ K may be endowed with the structure of a trivial 
smooth Frechet principal GI(3)-bundle, cf. [18]. It follows from Theorem 7.1 that K is 
a smooth Frechet manifold. Therefore, K is a configuration space in the sense of global 
analysis. Working with connections or, alternatively, with sections into the frame bundle is 
the more classical approach. However, from the point of view of global analysis, differential 
forms Z(M; rW3) are a much nicer space. 

8. Dislocation densities as torsions 

In classical terms, dislocation densities are described by torsions T E f2*(M; TM) which 
stem from flat connections. This section characterises these admissible torsions by 0(3)- 
valued functions, where O(3) denotes the orthogonal group. A priori, the correspondence 
between torsions and connections is not one-to-one. The Ricci lemma tells us under which 
conditions this is the case, cf. [8]. 

Proposition 8.1 (Ricci lemma). Let g be a metric on a Riemannian manifold M and T E 
S2*(M; TM). Then there exists a unique connection V which is metric with respect to g 
and has torsion T. 

In general, V in Proposition 8.1 will have non-vanishing curvature. Thus, flat connections 
which are compatible with a given metric are characterised first. 

Proposition 8.2. Let y E Z(M; R3). Then set qf all connection in K which are metric with 
respect to m [ y ] is given by 

K, := {V[ay] I a E Crn(M; O(3))). 

Prooj Let y, p E Z(M; rW3) be arbitrary. We have to show that V[p] is metric with respect 
to m[v] iff V[p] = V[ay], where a E f?(M; O(3)). Since m[uv] = m[Y] for all 
a E F’(M; O(3)), by Proposition 3.1, V[ay] is compatible with the metric m[Y]. 

For the converse observe that for any basis wl , 1~2, w3 E R3, a frame Yi , Y2, Y3 E 
T(TM) is defined by setting Yk := ,!-lWk, k = 1,2,3. In particular, we may choose 
the Wk E [w3 such that m[r(po)](Yk(po), Ye) = f&l, k, 1 = 1,2, 3, where po E M is 
some fixed point. By Lemma 3.2, this frame is parallel with respect to V[p]. From metricity 
(V[fi]m[Y]) = 0 we obtain 

Lz(m[y](Yk, Yl)) = 0 VZ E r(TM), k, 1 = 1,2, 3, 

i.e. m[Y](Yk, Yl) 3 6&l, k, 1 = I, 2, 3 on M. This shows that Yl, Y2, Y3 E r(TM) is 
m[y]-orthonormal and parallel with respect to V[B]. By Proposition 3.2, there exists ,’ E 
Z(M; lR3), such that Yl, Y2, Ys is m[y]-orthonormal and parallel with respect to V[y]. The 
first property implies m[v] = m[y], yielding p = ay for some a E C”(M; O(3)). The 
second one then gives V[ay] = V[p], since flat connections are uniquely determined by 
orthonormal, parallel frames. 0 
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Proposition 8.2 motivates the following. If T[y] denotes the torsion of V[y], then the set 
of all m[y]-admissible torsions is defined by 

lY := {T[UY] I a E C”(M; O(3))). y E Z(M; R’). 

Clearly, 1, c fL’(M; TM) for all y E Z(M; [w3). It is shown next that in the case where 
TM is trivialisable, 7, may be identified with C?(M; O(3)) up to O(3)-valued constant 
functions. 

Proposition 8.3. Let y, p 6 Z(M: II@). Then 

m[y] = m[B] and T[y] = T[/?] w fi = uy witha E O(3). 

Moreolar, ,for ench T E ‘&, y E I( M: R3), the naturul surjection 

TIT,, : CX(M: O(3)) - lY. u H T[ayl, 

sati.@es =G,’ (T) 2 O(3). 

Proc.$ Clearly, 

m[vl = mUI * 3a E Cm(M: O(3)) with p = sly. (27) 

From the equality of the torsions T[y] = T[#?], the Ricci lemma implies V[y] = V[#J]. 
By Proposition 7.2 the latter is valid iff there exists a E G/(3) such that B = ay. By (27). 
N E O(3), yielding the first statement. The second statement then becomes obvious. 0 

Identifying constant O(3)-valued functions with O(3), the quotient CLY’(M; 0(3)),0(3, 
is defined analogous to (26). This quotient is a Frkhet manifold, cf. 1181. Now. 
Proposition 8.3 yields the desired characterisation of dislocation densities. 

Theorem 8.1. Let y E Z(M; R3). Then the set of all m[y]-admissible torsions IY is 
isomorphic with Cm(M; 0(3)),o(x) via the induced isomorphism 

71q, : C=(M: 0(3)),0(3, 5 lY. [aI - T[lryl. 

If y, @ E I(M; R3) are closed forms dy = dp = 0, then both connections V[y] and 
V[@] have vanishing torsions T[y] = T[B] = 0. As a consequence of Proposition 8.3, this 
yields the following. 

Corollary 8.1. Zf y, fi E Z(M; R3) are closedforms, then 

m[yl = m[B] R p = ay withu E O(3). 

In particular, ifi, j E E(M; R”), then 

m[dil = m[dj] ++ di = u dj with a E O(3). 
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Appendix A. The structure of V(M; R3) 

We turn to the question when d j +B E Z(M; rW3) where j E E(M; rW3), ,?I E D(M; rW3). 
We need an appropriate criterion for B being relatively ‘small’ as compared to d j. Each 
metric g E M(M) defines a (fibre-) norm on TM given by 

l%lg := ,/g(~)G'p up), up E T,M, p E M. 

On the vector bundle of all strong bundle endomorphisms End(TM) this norm induces the 
fibre norm 

lApI, := sup IApuplR’ A E End(TM), up E T,M, p E M, 64.1) 
lL),,I,=I 

which in turn on the module of sections T(End(TM)) induces the maximum norm 

II . Ilg.co := pmEaMx 1 . lg. (A.21 

The latter is well defined since M is compact. The norm (A. 1) is fibrewise an operator norm 
on End(TM), i.e. in particular 

IIA~~II,,, i IIAIIg.mll~II~.ca VA, B E f (End(TM)). 

Let qg E T( M; R3) be a one-form with g = m[ng] given by Lemma 3.1. Since rig is injective 
for each (II E 52’(M; d), there exists a unique A[Q] E I’(End(TM)) with C_I = r],nA[qJ. 
Thus the norm (A.l) induces a fibre norm on A’(M; R3), again denoted by I . Ig, given by 

bypIg := lA[vglPIR Va E A’(M; FP), p E M. (A.3) 

This norm is well defined, since for each one-form qg E Z(M; lQ3) with m[e,] = m[r]J = g 
the bundle isomorphism 0 E Aut(TM) given by jig = ~~30 is fibrewise isometric with 
respect to g. Then OdA[ljg] = A[qg] and we have 

IW&lplg = lO,,~A[&l,I, = IA[rlglpI, Vu E hK R3), P E M. 

On 0’ (M; R3) the analogue of (A.2) is given by the maximum norm 

lI~llg,co := n-y-$ bplg Va E Q’(M; 6). (A.4) 

It is shown in [ 181 that the norm (A.3) is equivalent to the norm induced by the fibre metric 
6. Also, for any two Riemannian metrics g, g E M(M), the induced norms (A.4) are 
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equivalent. A criterion for the injectivity of one-forms of type d j + /l may now be stated 
in slightly more general form. 

Proposition A.l. Let g = m[q,] E M(M) be a fixed Riemannian metric and y E 
Z(M; (w3) be arbitrary Then there exists a positive constant c > 0 such that y + /3 E 
Z(M: IW3)for all b E R’(M; F?‘) with II/lllg,oo < c. 

Proo$ For arbitrary y E Z(M; rW3) and each /I E Sz’ (M: [w”) there are a unique C[qR] E 
T(Aut(TM)) and B[nJ E T(End(TM)) such that 1/ = ns C[n,?] and /l = ns B[n9]. 
respectively. We write 

Y + B = n&&M + B[v~I-C[Q-‘) C[qgl, 

which implies 

y + B E Z(M; Iw3) M (idTM + B[Q] C[Q-‘) E T(Aut(TM)). 

By the theorem on Neumann series (cf. [l]), the latter holds true for 

lI~[~~l mgl-‘Il~,cx3 = IIB C[rl$J’I/g.cc < 1. 

In particular, we have y + fi E Z(M; iw3) for all ,3 such that 

IIBll,q.cc < ’ 
llm?glP lIg.00 =: c . 

This completes the proof. 0 

Note that the constant c appearing in Proposition A.1 depends on the chosen metric g 
only. In particular, for j E E(M; [w’) we have ]]d,j(l,,lldjl.oc = \(idTMllm[djl.m = 1 by 
definition. 

Corollary A.l. Let /3 E ti’(M: rW3). Then dj + /3 E Z(M: IW”)for all j E E(M; Iw”) 

such that l\~llm[dj].m < 1. 

Corollary A.1 implies that an embedding j E E(M: Iw’) can bear a given dislocation 
density dB as long as /3 E D(M: iw3) is small enough such that d j + /l E Z(M: lw3). The 
converse is also true: 

Theorem A.l. Let dc E R*(M; [w3) be an arbitrary exact tcvo-form. Then there exists 
y E Z(M: rW3) such that dy = dC;. In particular, y = dj + ,Ll E V(M; [w’), where p is the 
divergence:free part of <. 

ProojI The Helmholtz decomposition of c yields 6 = dh + /I with k E C”( M: R-‘), 
/I E D(M; rW3). For any embedding j’ and any sufficiently large positive number h, 

II~llmlhdj’l.cc = ~Il@llm[dj’].cc < 1. 

By Corollary A.l, setting j = h . j’, yields y := d,j + /3 E V(M: [w”). 0 
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Proposition A.1 implies that V(M; R3) c Z(M; R3) is an open subset of Z(M; lR3) en- 
dowed with the Frkhet topology. Due to the norm equivalence mentioned above, this topo- 
logy is independent of the metric g on M. Furthermore, one can show that dE(M; R3) c 

V(M; rW3) is aFr&het submanifoldofZ(M; R3). Thus, dE(M; R3) becomes a submanifold 
of V(M; R3), see [ 181 for details. 

Proposition A.2. The configuration space V(M; R3) is an open Frkhet submanifold of 
Z(M; R3) which contains dE(M; R3) as a Frkhet submamyold. 
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